## Section 15.6

## Change of Variables

Transformations and Jacobians
Motivation and Rescaling
Transformations in $\mathbb{R}^{2}$
Linear Transformations
Integration and Change of Variables
Intuition for Jacobian
Jacobian and Change of Variable Formula for Two variables
Change of Variables vs. $u$-Substitution
Example, Simplifying Domain; Transformation is Given
Example, Simplifying the Integrand
Jacobian and Inverse Transformation
Example, Simplifying the Integrand
Example, Simplifying the Domain
Change of Variables for Triple Integrals

1 Transformations and Jacobians

## Motivating Example

Motivating Example: Calculate $\iint_{D} d A$, where $D$ is the region shown below.

- Motivating Video

- Approach 1: Break $D$ into simple regions or use two concentric regions. This will involve Square root functions. (Yuck.)
- Approach 2: Use polar coordinates.
- Observe that $D=\left\{(r, \theta) \mid 1 \leq r \leq 2,0 \leq \theta \leq \frac{3 \pi}{2}\right\}$.
- Goal: Write $\iint_{D} d A$ as $\int_{1}^{2} \int_{0}^{3 \pi / 2}$ [something] $d \theta d r$


## Change of Variables

In general, we want to be able to evaluate integrals $\iint_{D} f(x, y) d A$, where $D$ has a complicated shape, by replacing $D$ with a simpler region $E$. The relationship between the regions is given by a transformation $G: E \rightarrow D$.

The punchline will be that

$$
\iint_{D} f(x, y) d A=\iint_{E} f(G(u, v))|\operatorname{Jac}(G)| d u d v
$$

where $\operatorname{Jac}(G)$, the Jacobian of $G$, records how $G$ rescales area.

## Things we need to figure out:

(1) What is a "transformation"?
(2) How do we measure how a transformation rescales area?

## Transformations in $\mathbb{R}^{2}$

Suppose that we have planar regions $D$ (with coordinates $x, y$ ) and $E$ (with coordinates $u, v$ ).
A transformation from $E$ to $D$ is a function $\overrightarrow{\mathrm{G}}(u, v)=(x, y)$ such that
(c) $\overrightarrow{\mathrm{G}}$ is one-to-one on the interior of $E$.
(c) $\overrightarrow{\mathrm{G}}$ has continuous first-order partial derivatives.


Typically, transformations change the area of regions in $\mathbb{R}^{2}$.

## Transformations in $\mathbb{R}^{2}$

Motivating Example: Conversion of rectangular coordinates to polar coordinates is a transformation $[0, \infty) \times[0,2 \pi] \rightarrow \mathbb{R}^{2}$.



## Transformations in $\mathbb{R}^{2}$

To see that $\overrightarrow{\mathrm{G}}(r, \theta)=(x, y)=(r \cos (\theta), r \sin (\theta))$ is a transformation:

1. $\vec{G}$ is one-to-one on $(0, \infty) \times(0,2 \pi)$.
(It is not invertible on the boundary - for example, $\overrightarrow{\mathrm{G}}(r, 0)=\overrightarrow{\mathrm{G}}(r, 2 \pi)$ for all $r$, and $\overrightarrow{\mathrm{G}}(0, \theta)=(0,0)$ for all $\theta$ - but that is okay.)
2. $\vec{G}$ is continuously differentiable:

$$
\begin{array}{ll}
x_{r}(r, \theta)=\cos (\theta) & x_{\theta}(r, \theta)=-r \sin (\theta) \\
y_{r}(r, \theta)=\sin (\theta) & y_{\theta}(r, \theta)=r \cos (\theta) \\
\overrightarrow{\mathrm{G}}_{r}(r, \theta)=(\underbrace{\cos (\theta)}_{x_{r}}, \underbrace{\sin (\theta)}_{y_{r}}) & \overrightarrow{\mathrm{G}}_{\theta}(r, \theta)=(\underbrace{-r \sin (\theta)}_{x_{\theta}}, \underbrace{r \cos (\theta)}_{y_{\theta}})
\end{array}
$$

## Transformations in $\mathbb{R}^{2}$

A transformation $\vec{G}: E \rightarrow D$ doesn't just map points to points; it maps subsets $A$ of the domain $E$ to subsets of the range $D$.

For instance, if $\overrightarrow{\mathrm{G}}(r, \theta)=(x, y)=(r \cos (\theta), r \sin (\theta))$ and $\mathcal{R}$ is the rectangle $\left[r_{1}, r_{2}\right] \times\left[\theta_{1}, \theta_{2}\right]$, then $\vec{G}(\mathcal{R})$ is a circular sector:



Note: The area of $\overrightarrow{\mathrm{G}}(\mathcal{R})$ does not depend just on the area of $\mathcal{R}$ !

## Linear Transformations

The simplest transformations are linear transformations. (MATH 290!)

$$
\overrightarrow{\mathrm{G}}(u, v)=(A u+C v, B u+D v) \quad \text { (where } A, B, C, D \text { are constants) }
$$




Let $\vec{r}=\langle A, B\rangle$ and $\overrightarrow{\mathrm{s}}=\langle C, D\rangle$. Then:

- $\vec{r}=\vec{G}(\vec{i})$ and $\vec{s}=\vec{G}(\vec{j})$.
- $G$ transforms the unit square $[0,1] \times[0,1]$ to a parallelogram with sides $\vec{r}$ and $\vec{s}$.
- The unit square has area $\|\vec{i} \times \vec{j}\|=1$, and the parallelogram has area $\|\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{s}}\|=|A D-B C|$.(This is the rescaling factor for all rectangular regions.)
In Math 290, the above linear transformation is denoted as

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
A & C \\
B & D
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

## Linear Transformations

$G$ maps translations of $[0,1] \times[0,1]$ to translations of the parallelogram.


Linear transformations scale area uniformly. The scaling factor is the absolute value of the determinant

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left|\begin{array}{ll}
A & B \\
C & D
\end{array}\right|=A D-B C .
$$

That is, for all regions $E$ in the $u, v$-plane,

$$
\operatorname{Area}(\overrightarrow{\mathrm{G}}(E))=|A D-B C| \operatorname{Area}(E) .
$$

## Linear Transformations

Example 1:
$\overrightarrow{\mathrm{G}}(u, v)=(\underbrace{4 u-v}_{x}, \underbrace{u+2 v}_{y})$.



The scaling factor for area is $\left|\begin{array}{cc}4 & 1 \\ -1 & 2\end{array}\right|=9$.
The inverse of $\overrightarrow{\mathrm{G}}$ is $\overrightarrow{\mathrm{G}}^{-1}(x, y)=\left(\frac{y+2 x}{9}, \frac{4 y-x}{9}\right)$.
(Note: If $\overrightarrow{\mathrm{G}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation and the area scaling factor is nonzero, then $\overrightarrow{\mathrm{G}}$ is invertible.)

## 2 Integration and Change of Variables

## Rescaling Area for General Transformations

What is the scaling factor for a general (non-linear) transformation?
Take a very small rectangle $E$ in the $u v$-plane with a vertex at ( $u_{0}, v_{0}$ ) and side lengths $\Delta u$ and $\Delta v$.

Suppose that $E$ is mapped to $R$ in the $x y$-plane by a transformation $G$.
The region $R$ is not necessarily a rectangle, but it does have four vertices and four edges.

Since the rectangle $E$ was very small, the edges connected to $G\left(u_{0}, v_{0}\right)$ can be approximated by the vectors

$$
\begin{aligned}
\overrightarrow{\mathrm{a}} & \approx \Delta u\left\langle\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right\rangle & \overrightarrow{\mathrm{b}} & \approx \Delta v\left\langle\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right\rangle \\
& =\Delta u \overrightarrow{\mathrm{G}}_{u} & & =\Delta v \overrightarrow{\mathrm{G}}_{v}
\end{aligned}
$$

## Rescaling Area for General Transformations

Since the rectangle $E$ was very small, its image $R=\overrightarrow{\mathrm{G}}(E)$ is close to a parallelogram, so

$$
\operatorname{area}(R) \approx\left\|\left(\overrightarrow{\mathrm{G}}_{u} \Delta u\right) \times\left(\overrightarrow{\mathrm{G}}_{v} \Delta v\right)\right\|=\left\|\overrightarrow{\mathrm{G}}_{u} \times \overrightarrow{\mathrm{G}}_{v}\right\| \Delta u \Delta v
$$



Conclusion: The transformation $G$ scales area by a factor of

$$
\left\|\vec{G}_{u} \times \vec{G}_{v}\right\| .
$$

## Jacobians and the Change-Of-Variable Formula

The Jacobian of the transformation $\overrightarrow{\mathrm{G}}(u, v)=(x(u, v), y(u, v))$ is defined as

$$
|\operatorname{Jac}(\overrightarrow{\mathrm{G}})|=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left\|\overrightarrow{\mathbf{G}}_{u} \times \overrightarrow{\mathrm{G}}_{v}\right\|=\left|\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array} \|=\left|\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}\right|\right.
$$

The absolute value of Jacobian is the area scaling factor for $\vec{G}$. That is, the scaling factor is $\left\|\overrightarrow{\mathrm{G}}_{u} \times \overrightarrow{\mathrm{G}}_{v}\right\|$.

## Double Integration with Change of Variables

Let $\overrightarrow{\mathrm{G}}(u, v)=(x(u, v), y(u, v))$ be a transformation, and let $\overrightarrow{\mathrm{G}}(S)=R$. Then

$$
\iint_{R} f(x, y) d A_{x y}=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A_{u v}
$$

Using this formula does not typically evaluate the integral immediately, but it enables you to convert it into an integral over a geometrically simpler region or simpler integrand.

## Interlude: Change of Variables vs. u-Substitution

The change-of-variables formula

$$
\iint_{R} f(x, y) d A_{x y}=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A_{u v}
$$

is analogous to $u$-substitution from Calculus I:

$$
\int_{a}^{b} F(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} F(u) d u
$$

- In Calculus I, we used a transformation $u=g(x)$ to replace an integral over $x$ with an integral over $u$, in order to simplify the integrand.
- Now, we are using a transformation $(x, y)=G(u, v)$ to replace an integral over $x, y$ with an integral over $u, v$, either to simplify the integrand or the region of integration.

Example 2: Let $\overrightarrow{\mathrm{G}}$ be the transformation given by $x=u^{2}-v^{2}$ and $y=2 u v$ and let $S=\{(u, v) \mid 0 \leq u \leq 1,0 \leq v \leq 1\}$. Find the image $R=\overrightarrow{\mathrm{G}}(S)$, the Jacobian of $G$, and the area of $R$.
Solution: Walk around the boundary of $S$ and plot the corresponding points on the boundary of $\overrightarrow{\mathrm{G}}(S)$. In this case, the change of variable simplifies the region.

| $S$ | $G(S)$ | $R$ |  |  |
| :--- | :--- | :--- | :--- | :---: |
| $(u, 0), 0 \leq u \leq 1$ | $\left(u^{2}, 0\right)$ | $y=0$ | $0 \leq x \leq 1$ |  |
| $(1, v), 0 \leq v \leq 1$ | $\left(1-v^{2}, 2 v\right)$ | $x=1-y^{2} / 4$ | $0 \leq y \leq 2$ |  |
| $(u, 1), 1 \geq u \geq 0$ | $\left(u^{2}-1,2 u\right)$ | $x=y^{2} / 4-1$ | $2 \geq y \geq 0$ |  |
| $(0, v), 1 \geq v \geq 0$ | $\left(-v^{2}, 0\right)$ | $y=0$ | $-1 \leq x \leq 0$ |  |
|  |  |  |  |  |




## Example 2 (cont'd):

$\overrightarrow{\mathrm{G}}(u, v)=(x, y)=(\underbrace{u^{2}-v^{2}}_{x}, \underbrace{2 u v}_{y})$
$S=\{(u, v) \mid 0 \leq u \leq 1,0 \leq v \leq 1\}$
The Jacobian is $\operatorname{Jac}(\overrightarrow{\mathrm{G}})=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}2 u & -2 v \\ 2 v & 2 u\end{array}\right|=4\left(u^{2}+v^{2}\right)$.
We can calculate the area of $R=\overrightarrow{\mathrm{G}}(S)$ in two ways.
Using the change-of-variables formula:

$$
\iint_{R} 1 d A=\iint_{S} 4\left(u^{2}+v^{2}\right) d A=4 \int_{0}^{1} \int_{0}^{1}\left(u^{2}+v^{2}\right) d u d v=\frac{8}{3}
$$

Using single-variable calculus:

$$
2 \int_{0}^{2} 1-\frac{y^{2}}{4} d y=2\left(y-\left.\frac{y^{3}}{12}\right|_{0} ^{2}\right)=\frac{8}{3}
$$

Motivating Example Revisited (for handout only): Calculate $\iint_{D} x^{2} y d A$, where $D$ is the region shown below.


Here we can use change of variables to simplify the domain of integration by replacing $D$ with $E$.

By the change-of-variables formula:

$$
\iint_{D} x^{2} y d A_{x y}=\iint_{E}(r \cos \theta)^{2}(r \sin \theta)\left|\begin{array}{ll}
x_{r} & x_{\theta} \\
y_{r} & y_{\theta}
\end{array}\right| d A_{r \theta}
$$

## Motivating Example Revisited (cont'd):

$$
\begin{aligned}
\iint_{D} x^{2} y d A_{x y} & =\iint_{E}(r \cos \theta)^{2}(r \sin \theta)\left|\begin{array}{ll}
x_{r} & x_{\theta} \\
y_{r} & y_{\theta}
\end{array}\right| d A_{r \theta} \\
& =\int_{1}^{2} \int_{0}^{3 \pi / 2}(r \cos (\theta))^{2}(r \sin (\theta))\left|\begin{array}{cc}
\cos (\theta) & -r \sin (\theta) \\
\sin (\theta) & r \cos (\theta)
\end{array}\right| d \theta d r \\
& =\int_{1}^{2} \int_{0}^{3 \pi / 2} r^{3} \cos ^{2}(\theta) \sin (\theta)\left(r \cos ^{2}(\theta)+r \sin ^{2}(\theta)\right) d \theta d r \\
& =\int_{1}^{2} \int_{0}^{3 \pi / 2} r^{4} \cos ^{2}(\theta) \sin (\theta) d \theta d r \\
& =\left(\int_{1}^{2} r^{4} d r\right)\left(\int_{0}^{3 \pi / 2} \cos ^{2}(\theta) \sin (\theta) d \theta\right) \\
& =\left(\frac{31}{5}\right)\left(-\frac{1}{3}\right)=-\frac{31}{15} .
\end{aligned}
$$

Example 3: Let $R$ be the trapezoidal region with vertices $(1,0),(2,0)$, $(0,-2)$, and $(0,-1)$. Evaluate the integral

$$
\iint_{\mathcal{R}} e^{(x+y) /(x-y)} d A
$$

Solution: Here we can use change of variables to simplify the integrand.

- The integrand suggests defining $(u, v)=\overrightarrow{\mathrm{G}}^{-1}(x, y)=(x+y, x-y)$.
- Solve for $x, y$ to get $(x, y)=\overrightarrow{\mathrm{G}}(u, v)=\left(\frac{u+v}{2}, \frac{u-v}{2}\right)$.


Note that $S$ is horizontally simple: $1 \leq v \leq 2,-v \leq u \leq v$.

Example 3 (cont'd):

$$
\begin{aligned}
\iint_{R} e^{(x+y) /(x-y)} d A & =\iint_{S} e^{u / v}\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A \\
& =\int_{1}^{2} \int_{-v}^{v} e^{u / v}\left|\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right| d u d v \\
& =\frac{1}{2} \int_{1}^{2} \int_{-v}^{v} e^{u / v} d u d v \\
& =\frac{1}{2} \int_{1}^{2}\left[\left.v e^{u / v}\right|_{u=-v} ^{u=v}\right] d v \\
& =\frac{1}{2} \int_{1}^{2} v\left(e-e^{-1}\right) d v \\
& =\frac{3}{4}\left(e-e^{-1}\right)
\end{aligned}
$$

## A Useful Fact About Jacobians

If $F$ is the inverse transformation of $G$, that is,

$$
\overrightarrow{\mathrm{F}}(x, y)=(u, v) \quad \text { and } \quad \overrightarrow{\mathrm{G}}(u, v)=(x, y),
$$

then

$$
\operatorname{Jac}(\overrightarrow{\mathrm{F}})=\operatorname{Jac}(\overrightarrow{\mathrm{G}})^{-1}
$$

This fact is suggested by the notation:

$$
\operatorname{Jac}(\vec{F})=\frac{\partial(u, v)}{\partial(x, y)}, \quad \operatorname{Jac}(\overrightarrow{\mathrm{G}})=\frac{\partial(x, y)}{\partial(u, v)}
$$

(Try it yourself for a linear transformation - or see exercises 49-51 in §15.6.)

Example 4: Evaluate $\int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y}(y-2 x)^{2} d y d x$
Solution:


The domain is simple, so we use the transformation

$$
\overrightarrow{\mathrm{G}}^{-1}(x, y)=(x+y, y-2 x)
$$

to simplify the integrand and hope that the new domain is still simple!

$$
\begin{aligned}
\frac{\partial(u, v)}{\partial(x, y)}=3 & \Rightarrow \frac{\partial(x, y)}{\partial(u, v)}=\frac{1}{3} \\
\iint_{\mathcal{R}} \sqrt{x+y}(y-2 x)^{2} d A & =\int_{0}^{1} \int_{-2 u}^{u} \frac{\sqrt{u} v^{2}}{3} d v d u \\
& =\int_{0}^{1} u^{7 / 2} d u=\frac{2}{9}
\end{aligned}
$$

## Change of Variables, Simplifying the Domain

Example 5: Let $\mathcal{R}$ be the region in the first quadrant bounded by $x y=1, x y=4, y=x$, and $y=2 x$. Evaluate the integral

$$
\iint_{\mathcal{R}} x y^{3} d A .
$$

Solution: The domain of integration is

$$
\mathcal{R}=\{(x, y) \mid 1 \leq x y \leq 4,1 \leq y / x \leq 2\}
$$

Wouldn't it be nice if $x y$ and $y / x$ were variables so that $\mathcal{R}$ was a rectangle?

Use a transformation! Define

$$
\overrightarrow{\mathrm{G}}^{-1}(x, y)=(u, v)=(x y, y / x)
$$

so that

$$
\overrightarrow{\mathrm{G}}(u, v)=(x, y)=\left(u^{1 / 2} v^{-1 / 2}, u^{1 / 2} v^{1 / 2}\right) .
$$




Jacobian: $\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}\frac{1}{2} u^{-1 / 2} v^{-1 / 2} & -\frac{1}{2} u^{1 / 2} v^{-3 / 2} \\ \frac{1}{2} u^{-1 / 2} v^{1 / 2} & \frac{1}{2} u^{1 / 2} v^{-1 / 2}\end{array}\right|=\frac{1}{2 v}$

In general: $\iint_{\mathcal{R}} f(x, y) d A=\int_{1}^{4} \int_{1}^{2} f\left(u^{1 / 2} v^{-1 / 2}, u^{1 / 2} v^{1 / 2}\right) \frac{1}{2 v} d v d u$

In particular: $\iint_{\mathcal{R}} x y^{3} d A=\int_{1}^{4} \int_{1}^{2} \frac{u^{2}}{2} d v d u=\frac{21}{2}$.

3 Change of Variables for Triple Integrals

## Change of Variables for Triple Integrals

Let $R$ be a region in $\mathbb{R}^{3}$ with coordinates $x, y, z$.
Let $S$ be a region in $\mathbb{R}^{3}$ with coordinates $u, v, w$.
Let $\overrightarrow{\mathrm{G}}$ be a transformation that maps $S$ to $R$ :

$$
\overrightarrow{\mathrm{G}}(u, v, w)=(x(u, v, w), y(u, v, w), z(u, v, w))
$$

Then

$$
\iiint_{R} f(x, y, z) d V_{x y z}=\iiint_{S} f(G(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d V_{u v w}
$$

where

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\operatorname{Jac}(\overrightarrow{\mathrm{G}})=\left|\begin{array}{ccc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right|
$$

## Change of Variables for Triple Integrals Example

Example 6: Let $R$ be the parallelepiped in $\mathbb{R}^{3}$ defined by the inequalities

$$
\begin{gathered}
1 \leq x-2 y+z \leq 3 \\
2 \leq 2 x+y-3 z \leq 4 \\
5 \leq x+y+z \leq 8
\end{gathered}
$$

To change variables in an integral of the form $\iiint_{R} f(x, y, z) d V$ :

- Let $(u, v, w)=\overrightarrow{\mathrm{G}}^{-1}(x, y, z)=(x-2 y+z, 2 x+y-3 z, x+y+z)$.

In Math 290, this is also known as $\overrightarrow{\mathrm{G}}(x, y, z)=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$.

- The inverse is $(x, y, z)=\overrightarrow{\mathrm{G}}(u, v, w)=\left(\frac{4 u+3 v+5 w}{15}, \frac{-5 u+5 w}{15}, \frac{u-3 v+5 w}{15}\right)$.

In Math 290, this is known as $\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]^{-1}\left[\begin{array}{l}u \\ v \\ w\end{array}\right]$

- Compute $\operatorname{Jac}(\overrightarrow{\mathrm{G}})=\operatorname{Jac}(\overrightarrow{\mathrm{F}})^{-1}=\left|\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right|^{-1}=\frac{1}{15}$.


## Change of Variables for Triple Integrals Example

Example 6 (cont'd): The upshot is that

$$
\begin{aligned}
\iiint_{R} f(x, y, z) d V_{x y z}= \\
\int_{1}^{3} \int_{2}^{4} \int_{5}^{8} f\left(\frac{4 u+3 v+5 w}{15}, \frac{-5 u+5 w}{15}, \frac{u-3 v+5 w}{15}\right) \frac{1}{15} d w d v d u .
\end{aligned}
$$

We wanted to present a general example of linear change of variables for triple integral so you connect math 127 and Math 290 transformations. You will see a simple example of linear change of variables for triple integral in lab which doesn't require any knowledge of Math 290.

The most common applications of the change-of-variables formulas are to convert double integrals to polar coordinates, and to convert triple integrals to cylindrical or spherical coordinates.

