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1 Transformations and Jacobians



Motivating Example
Motivating Example: Calculate

¨
D

dA, where D is the region shown

below. Motivating Video
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1
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Approach 1: Break D into simple regions or use two concentric
regions. This will involve Square root functions. (Yuck.)
Approach 2: Use polar coordinates.

Observe that D = {(r , θ)
∣∣ 1 ≤ r ≤ 2, 0 ≤ θ ≤ 3π

2
}.

Goal: Write
¨

D

dA as
ˆ 2

1

ˆ 3π/2

0
[something] dθ dr

https://mediahub.ku.edu/media/t/1_en02hv3l


Change of Variables

In general, we want to be able to evaluate integrals
¨

D

f (x , y) dA, where

D has a complicated shape, by replacing D with a simpler region E . The
relationship between the regions is given by a transformation G : E → D.

The punchline will be that
¨

D

f (x , y) dA =

¨
E

f (G (u, v)) |Jac(G )| du dv

where Jac(G ), the Jacobian of G , records how G rescales area.

Things we need to figure out:

1 What is a “transformation”?
2 How do we measure how a transformation rescales area?



Transformations in R2

Suppose that we have planar regions D (with coordinates x , y) and E
(with coordinates u, v).

A transformation from E to D is a function G⃗(u, v) = (x , y) such that
1 G⃗ is one-to-one on the interior of E .
2 G⃗ has continuous first-order partial derivatives.

u

v

(u, v)
E

G⃗

G⃗−1

x

y

(x, y)
D

Typically, transformations change the area of regions in R2.



Transformations in R2

Motivating Example: Conversion of rectangular coordinates to polar
coordinates is a transformation [0,∞)× [0, 2π] → R2.

S1 S2S1 S2

r

θ

π

2π

π
8

π
4

0 1 2 3 4

x = r cos(θ)

y = r sin(θ)

G

G(S1)

G(S2)

x

y

1 2 3 4

π
8

π
4

Link

https://www.geogebra.org/m/xrmrwbbt


Transformations in R2

To see that G⃗(r , θ) = (x , y) = (r cos(θ), r sin(θ)) is a transformation:

1. G⃗ is one-to-one on (0,∞)× (0, 2π).

(It is not invertible on the boundary — for example, G⃗(r , 0) = G⃗(r , 2π)
for all r , and G⃗(0, θ) = (0, 0) for all θ – but that is okay.)

2. G⃗ is continuously differentiable:

xr (r , θ) = cos(θ) xθ(r , θ) = −r sin(θ)

yr (r , θ) = sin(θ) yθ(r , θ) = r cos(θ)

G⃗r (r , θ) = (cos(θ)︸ ︷︷ ︸
xr

, sin(θ)︸ ︷︷ ︸
yr

) G⃗θ(r , θ) = (−r sin(θ)︸ ︷︷ ︸
xθ

, r cos(θ)︸ ︷︷ ︸
yθ

)



Transformations in R2

A transformation G⃗ : E → D doesn’t just map points to points; it maps
subsets A of the domain E to subsets of the range D.

For instance, if G⃗(r , θ) = (x , y) = (r cos(θ), r sin(θ)) and R is the
rectangle [r1, r2]× [θ1, θ2], then G⃗(R) is a circular sector:

r

θ

r1

θ1

r2

θ2

rθ-plane

R

P

G⃗ x

y

r1

θ = θ1

r2

θ = θ2

xy -plane

G⃗(R)

G⃗(P)

Note: The area of G⃗(R) does not depend just on the area of R!



Linear Transformations
The simplest transformations are linear transformations. (MATH 290!)

G⃗(u, v) =
(
Au+Cv ,Bu+Dv

)
(where A,B,C ,D are constants)

u

v

j⃗ = ⟨0, 1⟩

i⃗ = ⟨1, 0⟩

G

x

y

s⃗ = ⟨C ,D⟩
r⃗ = ⟨A,B⟩

Let r⃗ = ⟨A,B⟩ and s⃗ = ⟨C ,D⟩. Then:

r⃗ = G⃗(⃗i) and s⃗ = G⃗(⃗j).
G transforms the unit square [0, 1]× [0, 1] to a parallelogram with
sides r⃗ and s⃗.
The unit square has area ∥⃗i × j⃗∥ = 1, and the parallelogram has area
∥⃗r × s⃗∥ = |AD − BC |.(This is the rescaling factor for all rectangular regions.)

In Math 290, the above linear transformation is denoted as[
x
y

]
=

[
A C
B D

] [
u
v

]



Linear Transformations
G maps translations of [0, 1]× [0, 1] to translations of the parallelogram.

Q
P
u

v

⟨0, 1⟩

⟨1, 0⟩

G⃗
Image of u-axisG⃗(Q) G⃗(P)

Image of v-axis

s⃗

r⃗ x

y

Linear transformations scale area uniformly. The scaling factor is the
absolute value of the determinant

det

[
A B
C D

]
=

∣∣∣∣A B
C D

∣∣∣∣ = AD − BC .

That is, for all regions E in the u, v -plane,

Area
(
G⃗(E )

)
= |AD − BC | Area(E ).



Linear Transformations
Example 1:
G⃗(u, v) = (4u − v︸ ︷︷ ︸

x

, u + 2v︸ ︷︷ ︸
y

).

u

v

j⃗

i⃗
x

y

G⃗(⃗j)

G⃗(⃗i)

The scaling factor for area is
∣∣∣∣ 4 1
−1 2

∣∣∣∣ = 9.

The inverse of G⃗ is G⃗−1(x , y) =

(
y + 2x

9
,

4y − x

9

)
.

(Note: If G⃗ : R2 → R2 is a linear transformation and the area scaling
factor is nonzero, then G⃗ is invertible.)



2 Integration and Change of Variables



Rescaling Area for General Transformations

What is the scaling factor for a general (non-linear) transformation?

Take a very small rectangle E in the uv -plane with a vertex at (u0, v0)
and side lengths ∆u and ∆v .

Suppose that E is mapped to R in the xy -plane by a transformation G .

a⃗

b⃗

G⃗(u0 + ∆u, v0)

G⃗(u0, v0 + ∆v)

R

G⃗(u0, v0)

The region R is not necessarily a
rectangle, but it does have four vertices
and four edges.

Since the rectangle E was very small,
the edges connected to G (u0, v0) can be
approximated by the vectors

a⃗ ≈ ∆u
〈

∂x
∂u ,

∂y
∂u

〉
b⃗ ≈ ∆v

〈
∂x
∂v ,

∂y
∂v

〉
= ∆u G⃗u = ∆v G⃗v



Rescaling Area for General Transformations
Since the rectangle E was very small, its image R = G⃗(E ) is close to a
parallelogram, so

area(R) ≈
∥∥∥(G⃗u ∆u

)
×
(
G⃗v ∆v

)∥∥∥ =
∥∥∥G⃗u × G⃗v

∥∥∥∆u ∆v

a⃗

b⃗

G⃗(u0, v0)

G⃗(u0 + ∆u, v0)

G⃗(u0, v0 + ∆v)

R

G⃗(u0, v0) ∆uG⃗u(u0, v0)

∆vG⃗v (u0, v0)

Conclusion: The transformation G scales area by a factor of∥∥∥G⃗u × G⃗v

∥∥∥ .



Jacobians and the Change-Of-Variable Formula

The Jacobian of the transformation G⃗(u, v) = (x(u, v), y(u, v)) is defined as

∣∣∣Jac(G⃗)∣∣∣ = ∣∣∣∣∂(x , y)∂(u, v)

∣∣∣∣ = ∥G⃗u × G⃗v∥ =

∥∥∥∥∥∥
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∥∥∥∥∥∥ =

∣∣∣∣∂x∂u ∂y

∂v
− ∂x

∂v

∂y

∂u

∣∣∣∣
The absolute value of Jacobian is the area scaling factor for G⃗. That is,
the scaling factor is ∥G⃗u × G⃗v∥.

Double Integration with Change of Variables
Let G⃗(u, v) = (x(u, v), y(u, v)) be a transformation, and let G⃗(S) = R.
Then ¨

R

f (x , y) dAxy =

¨
S

f (x(u, v), y(u, v))

∣∣∣∣∂(x , y)∂(u, v)

∣∣∣∣ dAuv

Using this formula does not typically evaluate the integral immediately, but it
enables you to convert it into an integral over a geometrically simpler region or
simpler integrand.



Interlude: Change of Variables vs. u-Substitution

The change-of-variables formula
¨

R

f (x , y) dAxy =

¨
S

f (x(u, v), y(u, v))

∣∣∣∣∂(x , y)∂(u, v)

∣∣∣∣ dAuv

is analogous to u-substitution from Calculus I:

ˆ b

a

F (g(x))g ′(x) dx =

ˆ g(b)

g(a)

F (u) du

In Calculus I, we used a transformation u = g(x) to replace an
integral over x with an integral over u, in order to simplify the
integrand.
Now, we are using a transformation (x , y) = G (u, v) to replace an
integral over x , y with an integral over u, v , either to simplify the
integrand or the region of integration.



Example 2: Let G⃗ be the transformation given by x = u2 − v2 and
y = 2uv and let S = {(u, v) | 0 ≤ u ≤ 1 , 0 ≤ v ≤ 1}. Find the image
R = G⃗(S), the Jacobian of G , and the area of R.
Solution: Walk around the boundary of S and plot the corresponding
points on the boundary of G⃗(S). In this case, the change of variable
simplifies the region.

S G(S) R
(u, 0), 0 ≤ u ≤ 1 (u2, 0) y = 0 0 ≤ x ≤ 1
(1, v), 0 ≤ v ≤ 1 (1 − v2, 2v) x = 1 − y2/4 0 ≤ y ≤ 2
(u, 1), 1 ≥ u ≥ 0 (u2 − 1, 2u) x = y2/4 − 1 2 ≥ y ≥ 0
(0, v), 1 ≥ v ≥ 0 (−v2, 0) y = 0 −1 ≤ x ≤ 0

u

v

S

S1
→

S2→→

S3 →→→

S4

→→→→

(0, 0) (1, 0)

(1, 1)(0, 1)

G⃗

x

y

(0, 0) (1, 0)

(0, 2)

(−1, 0)

x
=

1
−

y 24

x
=

y
2

4
−

1
→

→→

→→→

→→→→

R



Example 2 (cont’d):
G⃗(u, v) = (x , y) = (u2 − v2︸ ︷︷ ︸

x

, 2uv︸︷︷︸
y

)

S = {(u, v) | 0 ≤ u ≤ 1 , 0 ≤ v ≤ 1}

The Jacobian is Jac(G⃗) =
∂(x , y)

∂(u, v)
=

∣∣∣∣2u −2v
2v 2u

∣∣∣∣ = 4(u2 + v2).

We can calculate the area of R = G⃗(S) in two ways.

Using the change-of-variables formula:

¨
R

1 dA =

¨
S

4(u2 + v2) dA = 4
ˆ 1

0

ˆ 1

0
(u2 + v2) du dv =

8
3

Using single-variable calculus:

2
ˆ 2

0
1 − y2

4
dy = 2

(
y − y3

12

∣∣∣2
0

)
=

8
3



Motivating Example Revisited (for handout only): Calculate¨
D

x2y dA, where D is the region shown below.

2

3π
2

π

θ

r

E x = r cos(θ)

y = r sin(θ)

G⃗

x

y

D

Here we can use change of variables to simplify the domain of integration
by replacing D with E .

By the change-of-variables formula:
¨

D

x2y dAxy =

¨
E

(r cos θ)2(r sin θ)

∣∣∣∣xr xθ
yr yθ

∣∣∣∣ dArθ



Motivating Example Revisited (cont’d):
¨

D

x2y dAxy =

¨
E

(r cos θ)2(r sin θ)

∣∣∣∣xr xθ
yr yθ

∣∣∣∣ dArθ

=

ˆ 2

1

ˆ 3π/2

0
(r cos(θ))2(r sin(θ))

∣∣∣∣cos(θ) −r sin(θ)
sin(θ) r cos(θ)

∣∣∣∣ dθ dr
=

ˆ 2

1

ˆ 3π/2

0
r3 cos2(θ) sin(θ)

(
r cos2(θ) + r sin2(θ)

)
dθ dr

=

ˆ 2

1

ˆ 3π/2

0
r4 cos2(θ) sin(θ)dθ dr

=

(ˆ 2

1
r4 dr

)(ˆ 3π/2

0
cos2(θ) sin(θ)dθ

)

=

(
31
5

)(
−1

3

)
= −31

15
.



Example 3: Let R be the trapezoidal region with vertices (1, 0), (2, 0),
(0,−2), and (0,−1). Evaluate the integral

¨
R
e(x+y)/(x−y) dA.

Solution: Here we can use change of variables to simplify the integrand.
The integrand suggests defining (u, v) = G⃗−1(x , y) = (x + y , x − y).

Solve for x , y to get (x , y) = G⃗(u, v) =
(
u + v

2
,
u − v

2

)
.

u

v

>>>>

>

<<
>
>
>

v = 1

u = v

v = 2

u = −v

(1, 1)

(2, 2)(−2, 2)

(−1, 1)

S

(0,0)

G⃗ x

y

x
−
y
=

1

x
−
y
=

2

>

<
<

>
>

>

>
>
>
>

(1,
0)

(2,
0)

(0,−2)

(0,−1)
R

(0,0)

Note that S is horizontally simple: 1 ≤ v ≤ 2, −v ≤ u ≤ v .



Example 3 (cont’d):
¨

R

e(x+y)/(x−y) dA =

¨
S

eu/v
∣∣∣∣∂(x , y)∂(u, v)

∣∣∣∣ dA
=

ˆ 2

1

ˆ v

−v

eu/v
∣∣∣∣1/2 1/2
1/2 −1/2

∣∣∣∣ du dv

=
1
2

ˆ 2

1

ˆ v

−v

eu/v du dv

=
1
2

ˆ 2

1

[
veu/v

∣∣∣u=v

u=−v

]
dv

=
1
2

ˆ 2

1
v(e − e−1) dv

=
3
4
(
e − e−1)



A Useful Fact About Jacobians

If F is the inverse transformation of G , that is,

F⃗(x , y) = (u, v) and G⃗(u, v) = (x , y),

then
Jac(F⃗) = Jac(G⃗)−1.

This fact is suggested by the notation:

Jac(F⃗) =
∂(u, v)

∂(x , y)
, Jac(G⃗) =

∂(x , y)

∂(u, v)

(Try it yourself for a linear transformation — or see exercises 49-51 in
§15.6.)



Example 4: Evaluate
ˆ 1

0

ˆ 1−x

0

√
x + y (y − 2x)2 dy dx

Solution:

x

y

R

The domain is simple, so we use the transformation

G⃗−1(x , y) = (x + y , y − 2x)

to simplify the integrand and hope that the new
domain is still simple!

u

v

S 1

v = u

v = −2u

∂(u, v)

∂(x , y)
= 3 ⇒ ∂(x , y)

∂(u, v)
=

1
3

¨
R

√
x + y(y − 2x)2 dA =

ˆ 1

0

ˆ u

−2u

√
uv2

3
dv du

=

ˆ 1

0
u7/2 du =

2
9



Change of Variables, Simplifying the Domain
Example 5: Let R be the region in the first quadrant bounded by
xy = 1, xy = 4, y = x , and y = 2x . Evaluate the integral

¨
R
xy3 dA.

Solution: The domain of integration is

R = {(x , y)
∣∣∣ 1 ≤ xy ≤ 4, 1 ≤ y/x ≤ 2}.

Wouldn’t it be nice if xy and y/x were variables so that R was a
rectangle?

Use a transformation! Define

G⃗−1(x , y) = (u, v) = (xy , y/x)

so that
G⃗(u, v) = (x , y) = (u1/2v−1/2, u1/2v1/2).



u

v

S

1 4

2

1
G−−−−−−−−−−−−−→

x = u1/2v−1/2

y = u1/2v1/2

x

y

y = 4/x

y = 1/x

y = xy = 2x

R

Jacobian:
∂(x , y)

∂(u, v)
=

∣∣∣∣ 12u−1/2v−1/2 − 1
2u

1/2v−3/2

1
2u

−1/2v1/2 1
2u

1/2v−1/2

∣∣∣∣ = 1
2v

In general:
¨

R
f (x , y) dA =

ˆ 4

1

ˆ 2

1
f
(
u1/2v−1/2, u1/2v1/2

) 1
2v

dv du

In particular:
¨

R
xy3 dA =

ˆ 4

1

ˆ 2

1

u2

2
dv du =

21
2
.



3 Change of Variables for Triple Integrals



Change of Variables for Triple Integrals

Let R be a region in R3 with coordinates x , y , z .
Let S be a region in R3 with coordinates u, v ,w .
Let G⃗ be a transformation that maps S to R:

G⃗(u, v ,w) =
(
x(u, v ,w), y(u, v ,w), z(u, v ,w)

)
.

Then

˚
R

f (x , y , z) dVxyz =

˚
S

f
(
G (u, v ,w)

) ∣∣∣∣ ∂(x , y , z)∂(u, v ,w)

∣∣∣∣ dVuvw

where

∂(x , y , z)

∂(u, v ,w)
= Jac(G⃗) =

∣∣∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣∣∣
.



Change of Variables for Triple Integrals Example
Example 6: Let R be the parallelepiped in R3 defined by the inequalities

1 ≤ x − 2y + z ≤ 3,
2 ≤ 2x + y − 3z ≤ 4,
5 ≤ x + y + z ≤ 8.

To change variables in an integral of the form
˚

R

f (x , y , z) dV :

Let (u, v ,w) = G⃗−1(x , y , z) = (x − 2y + z , 2x + y − 3z , x + y + z).

In Math 290, this is also known as G⃗(x , y , z) =

1 −2 1
2 1 −3
1 1 1

xy
z

.

The inverse is (x , y , z) = G⃗(u, v ,w) =
( 4u+3v+5w

15 , −5u+5w
15 , u−3v+5w

15

)
.

In Math 290, this is known as

1 −2 1
2 1 −3
1 1 1

−1 u
v
w



Compute Jac(G⃗) = Jac(F⃗)−1 =

∣∣∣∣∣∣
1 −2 1
2 1 −3
1 1 1

∣∣∣∣∣∣
−1

= 1
15 .



Change of Variables for Triple Integrals Example

Example 6 (cont’d): The upshot is that

˚
R

f (x , y , z) dVxyz =

ˆ 3

1

ˆ 4

2

ˆ 8

5
f

(
4u + 3v + 5w

15
,
−5u + 5w

15
,
u − 3v + 5w

15

)
1
15

dwdvdu.

We wanted to present a general example of linear change of variables for
triple integral so you connect math 127 and Math 290 transformations.
You will see a simple example of linear change of variables for triple
integral in lab which doesn’t require any knowledge of Math 290.

The most common applications of the change-of-variables formulas are to
convert double integrals to polar coordinates, and to convert triple
integrals to cylindrical or spherical coordinates.
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